Time Crystals

Original article on Phys.org

Normal crystals, likes diamond, are an atomic lattice that repeats in space, but physicists recently suggested making materials that repeat in time. Last year, UC Berkeley’s Norman Yao sketched out the phases surrounding a time crystal and what to measure in order to confirm that this new material is actually a stable phase of matter. This stimulated two teams to build a time crystal, the first examples of a non-equilibrium form of matter.

To most people, crystals mean diamond bling, semiprecious gems or perhaps the jagged amethyst or beloved by collectors.

To Norman Yao, these inert crystals are the tip of the iceberg.

If crystals have an atomic structure that repeats in space, like the carbon lattice of a diamond, why can’t crystals also have a structure that repeats in time? That is, a time crystal?

In a paper published online last week in the journal Physical Review Letters, the University of California, Berkeley assistant professor of physics describes exactly how to make and measure the properties of such a crystal, and even predicts what the various phases surrounding the time crystal should be—akin to the liquid and gas phases of ice.
Read more at: https://phys.org/news/2017-01-physicists-unveil-mattertime-crystals.html#jCp